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1 Abstract

Type II diabetes is a serious health problem, with over 25 million Americans diagnosed. Thus,

diabetes prediction is a major focus of interest, within both the medical community and the general

public. In 2012, Kaggle.com, a competitive data-analysis website, released a set of electronic

health record data and challenged its users to predict which patients had diabetes. Although the

competition is over, we used this rich dataset to build models predicting diabetes from a patient’s

electronic medical record.

Traditional approaches to a modeling problem like this are often based on domain knowledge,

which is used to guide the selection and creation of relevant features for predictive modeling.

Instead of this domain-based approach, we considered a feature selection-based approach. Our

approach began with the generation of a very large feature table, which we then subsetted using

various feature reduction techniques (of both “wrapper” and “filter” types). We then induced a

variety of models, and assembled these models into ensembles in attempts to maximize lift. Our

final models were more than three times as effective as random selection, suggesting this feature

generation and selection approach is competitive with a domain knowledge-based approach. Our

feature selection-based approach also allowed for the discovery of unexpectedly relevant features,

something a domain-based procedure does not allow for. Although feature selection can be more

labor-intensive than a domain based approach, for this diabetes problem feature selection led to

both powerful predictive models and interesting insights.

2 Introduction & Background

Type II diabetes is a serious health problem in the United States and across the world. Over 25

million Americans currently suffer from diabetes, and monitoring and treating diabetes requires
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regular blood tests, sticking to a restricted diet, and regular insulin shots [Kaggle.com, 2014].

Diabetes is also associated with a range of complications, including heart disease, stroke, kidney

disease, blindness, and loss of limbs [Kaggle.com, 2014]. Early treatment of diabetes can help

minimize complications, and learning more about the co-morbidities of diabetes can help researchers

better understand the risks and warning signs associated with diabetes.

For these reasons, Kaggle.com partnered with Practice Fusion (a vendor of electronic health

record software) [Practice Fusion, 2014] to create a contest where data analysts worked to predict

diabetes in patients based on other medical information about those patients.

Predicting diabetes from medical information is a difficult task, since medical information for

a single patient is often stored in multiple locations. Furthermore, the storage schema of electronic

medical records makes getting “one set of predictors” per patient tricky, as patients can have

multiple records of medications, diagnoses, allergies, etc. for a single visit, and most patients visit

a healthcare provider multiple times. The Kaggle competition forced participants to meet these

challenges head-on.

Although the contest ended on September 10, 2012, we decided to attempt the challenge to

learn more about working with healthcare data. We did not look into the winners’ solutions until

after we had created and tested most of our own models. When we finally read the winner and

runners-up documentation, it was apparent that they used domain knowledge to inform their feature

choice and model construction. We possessed significantly less domain knowledge than of many

contest participants who work in the healthcare industry, but our research suggests that statistical

feature selection methods often perform as-well or better than domain-knowledge-based approaches

when selecting features to construct models [Cheng et al., 2006]. Because of this research, we tried

several different feature selection methods, and created models based on 25 different datasets, which

we winnowed down after further analysis of model and dataset predictive power. Eventually we

settled on two models maximizing lift at the population and dataset diabetes incidence rates, which

were ensembles of 25 and 93 models, respectively.

Lastly, we wish to note that the challenge was not about predicting future diabetes, but

about predicting diabetes in patients who already had a diagnosis–diagnoses of diabetes (as well

as diabetes-related medications and lab results) were masked from the data. While this task is

certainly more manageable than predicting diabetes in patients who have not yet received a medical

diagnosis, it is also ultimately less useful in the real world (if still a valid learning activity).
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3 Feature Creation and Table Merging

3.1 Introduction

The data was provided by Kaggle, and consisted of 17 tables filled with various aspects of pa-

tient healthcare information (see Figure 1 for a full breakdown with tables of fields). A total of

9948 patients were in the dataset, with 1904 patients having diabetes, a rate of 19.1%. Several

tables, such as SyncPatientSmokingStatus and SyncTranscriptDiagnosis, only functioned as

linkage tables between other tables. Many tables, however, contained multiple entries for a single

patient, and these multiple entries had to be reduced to a single entry per patient before modeling

could occur. Furthermore, some tables only had information for a subset of patients (including

SyncImmunization, which contained information on only 6 patients and was not considered).

We spent significant time determining how to best reduce the data to “one row per patient”

while still preserving as much of the information as possible. We also had to deal with general issues

of data cleaning, including contradictory information, junk fields, empty fields, and redundant

features. Precise information about the exact fields in each table can be seen in Figure 1. For the

sake of brevity, we will not list all the fields as we discuss each table.

3.2 The SyncPatient Table

The SyncPatient table contained a single row for each of the 9948 patients. Each row contained

information about the patient’s gender, year of birth, and state. Gender and year of birth were kept

as fields, and state was replaced with the percent prevalence of diabetes in that state, as provided

by the Centers for Disease Control [Centers for Disease Control and Prevention, 2012]. Age was

calculated and added as a feature.

3.3 The SyncAllergy Table

The SyncAllergy table contained 2798 records detailing the allergy information of 1725 different

patients. The table contained information about the allergen (including a medication name, if

relevant), the year the allergy was diagnosed, and the symptoms and severity of the allergic reaction.

We split the allergen field into 18 binary fields representing groupings of allergens. We

similarly split the allergic reaction descriptive field into 25 binary fields representing groupings of

reactions. We then transformed the qualitative severities (“very mild” to “severe”) into a numerical

field ranging from 1 to 4. We multiplied the binary reaction and allergen fields by severity, to give a

number from 1 to 4 instead of a binary value for allergen and allergic reaction. This transformation

allowed information about allergic reaction and severity to be contained within the same feature,

and information about allergen and severity to be contained within the same feature. Finally, we

calculated the length of time every allergy had been diagnosed for.
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Additional features were then calculated on a per-patient basis: the average time since di-

agnosis of all the allergies a patient had, a “max” field with the highest severity of all a patient’s

allergies, a count of the number of “severe” allergies a patient had, and mean of a patient’s al-

lergy severities. Finally, we “rolled up” some of the 18 groupings of allergens into some alternative

smaller bins by medication families, and the 25 groupings of reactions into smaller bins based on

the biological system (skin, circulatory, respiratory, etc.) the reaction occurred in.

3.4 The SyncTranscript Table

The SyncTranscript table contained 131,032 records of patient-provider interactions, and all 9948

patients had at least one record. The table contained vitals at the time of visit (height, weight, BMI,

blood pressure, temperature, respirations), visit year, and the specialty of the provider. Missing

values were found throughout the table, and the combination of missing values with multiple records

per patient made the SyncTranscript table especially cumbersome to deal with.

We created features of the minimum, maximum, and range of the following fields: height,

weight, BMI, systolic BP, diastolic BP, respirations, and temperature. We also created a feature of

the time since last the last visit to a provider. Lastly, we created a feature with a count of the total

number of patient visits, and a set of features with visit counts by the specialty of the provider.

3.5 The SyncDiagnosis Table

The SyncDiagnosis table contained only a few fields: diagnosis (ICD-9) codes, start and stop

years of the diagnoses, if the diagnosis was acute and/or current, and information about the doctor

and patient linking the diagnoses to other tables. But with 94,831 records across all 9948 patients,

SyncDiagnosis held a wealth of information that translated to hundreds of features in our complete

feature set.

The diagnosis descriptions matched numeric ICD-9 codes, which is where the bulk of the

information lay [Centers for Disease Control and Prevention, 2009]. ICD-9 codes are organized in a

hierarchical manner, with nearby numbers related to each other, and decimal places used to provide

extremely specific information extending the meaning of the primary 3-digit code. Thus, truncating

the ICD-9 codes to the whole number or tens digit provides an easy way to group diagnoses without

losing much information. SyncDiagnosis contained 3134 unique ICD-9 codes, but truncating to

the whole number left only 617 unique codes. We kept many of these 617 truncated ICD-9 code

bins as features with a count of times a patient was assigned a code, but many of these bins were

eliminated due to low variance. Finally, we added more features by rolling up the ICD9 codes into

62 separate bins based on families of conditions (corresponding to headers in the ICD-9 manual),

with more granular bins related to endocrine-system issues.

Capturing the information contained in the start year, stop year, and acute fields was espe-
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cially difficult. For each of the 62 bins of diagnosis families, we applied the following formula in

order to incorporate the start year, stop year, and acute condition fields:

1 + ln (endY ear − startY ear + 1)× acute

current

where:

endY ear is final year of the diagnosis

startY ear is first year of the diagnosis

acute = 2 if the diagnosis is acute, otherwise acute = 1

current = 1 if the diagnosis is current, otherwise current = 2

Most of the diagnosis were current, not acute, and were fairly new. A few, however, had

records of significant duration, and the log-transform of the diagnosis duration gives credit to the

duration of the diagnosis. Further, the acute multiplier and current divider both add information

about the severity of the diagnosis. The result of this formula can be stored in one cell per diagnosis,

while representing several cells of data.

3.6 The SyncConditions and SyncPatientConditions Tables

SyncPatientConditions contained flags of patients with no known allergies and no known medica-

tions (a total of 2836 statuses from 2824 patients), with the status descriptions in the SyncConditions

lookup table. Two Binary features marking patients with these two flags.

3.7 The SyncSmokingStatus and SyncPatientSmokingStatus Tables

SyncPatientSmokingStatus contained 4940 entries corresponding to 4427 patients. The different

smoking statuses recorded by Practice Fusion roughly overlapped with the National Institute of

Standards and Technology (NIST) smoking status codes [Office of the National Coordinator for

Health Information Technology, 2010]. NIST smoking codes are primarily concerned with how often

a person smokes and if they have smoked in the past. However, some of the statuses available to

medical providers in Practice Fusion offered information about quantity of cigarettes per day, and

we made an attempt to capture this as well. Issues arose when we discovered that some patients

had multiple smoking statuses (corresponding to multiple visits) with contradictory information.

We attribute these errors (which occurred in about 2% of patients) to Practice Fusion’s software,

which has two contradictory fields beginning with the same text: “0 cigarettes per day (previous

smoker)”, and “0 cigarettes per day (non-smoker or less than 100 in lifetime)”. These type of

contradictory errors were cleaned on a record-by-record basis.

Next, we considered a handful of different transformations of multiple smoking statuses, with

ranging granularity of information. One transformation captured non-smokers, ex-smokers, and
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current smokers separately, with binary features capturing quantity of current smoking (ranging

from, “Few cigarettes per day”, to, “2 or more packs per day”), as well as a binary field marking if

the patient reduced their level of smoking over time period in the dataset. Another transformation

merged this specific information into three groups: current smokers, ex-smokers, and never smoked.

A final transformation simply grouped patients into “smoking” and “non-smoking”.

3.8 The SyncPrescription Table

SyncPrescription contained 78,863 prescription records for 8953 patients, with fields capturing

the medication, the year the prescription was written, the quantity, refill information, and if generic

substitution was allowed. We calculated the following 10 features from this data on a per-patient

basis: total count of prescriptions, mean prescriptions per year, total count of prescribed refills,

mean refills per prescription, total count of “refill as needed” prescriptions, ratio of “refill as needed”

prescriptions to total prescriptions, total count of generic prescriptions, and ratio of generic pre-

scriptions to total prescriptions.

3.9 The SyncMedication Table

SyncMedication contained 44,520 medication history records for 9846 patients. The 2553 unique

medications in SyncMedication were re-classified into 109 groups to reduce sparsity while retaining

information, using medical RxList [2014] and WebMD [2014]. These 109 groups each became

feature, with a per-patient count of prescribed medications in each group.

3.10 The SyncLabResult SyncLabObservation SyncLabPanelTable

SyncLabResult, SyncLabObservation, and SyncLabPanel contained information about laboratory

work in a nested structure. SyncLabObservation, contained individual lab tests (“Vitamin B”,

“LDL Cholesterol”, “Hemoglobin”, etc.) with a test result, which were part of a panel listed in

SyncLabPanel. The lab panels were linked to SyncLabResult, which were then linked to patients.

Because of this nested structure separating individual patients from the actual test results, we

considered all of these tables as a single set of information. In all, there were 29,014 individual lab

tests performed on 791 patients.

After combining the tables, we focused our attention on a field marking individual lab test

results as abnormal and used this to construct meaningful features. We grouped individual lab

results into 101 panels, and then grouped these 101 panels into 31 sets of panels based on the

diseases lab panels were attempting to identify (using information from WebMD [2014]). Each of

the 31 panel sets became a feature, with a per-patient count of of abnormal lab results from each

set. Finally, a count of total lab results (normal or abnormal) and a mean number of lab results

per year were added on a per-patient basis.
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3.11 Joining the Individual Tables into a Single Features Table

All of these transformed tables were joined together into a single features table, for a total of 1043

features on each of 9948 patients. During the joining, not every patient was captured in every table

of transformations. For example, only 791 patients had lab results, leaving 9157 patients without

any lab data. One approach we considered would have been to leave these fields with a missing

value marker, indicating data was not available. However, because of R’s difficulty in dealing with

missing values, we decided we had to replace these missing values. For some of the transformations,

this made sense–for example, in a feature capturing allergy severity where 1 was the lowest result,

setting a value of 0 for patients with no allergy made sense. For other transformations, however,

less obvious solutions were necessary. To address this issue, we added more features indicating a

patient’s presence or absence in other fields in the table. For example, from lab data, a new binary

feature was created where a 1 indicated they had received lab results, and a 0 indicated they had

not. After eliminating features with a variance less than .01, our table had 980 features.
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Figure 1: Database schema of the Practice Fusion diabetes dataset. This figure should zoom-in

well on an original copy of the pdf.



4 Numerical Pre-Processing

We created three numerical transformations of our 980 features. A binary transformation made

every data point either 0 or 1 (1 meaning the original data had any value besides 0). A standard-

ization transformation mean centered all features at 0, with 1 being one standard deviation above

the mean and -1 being one standard deviation below the mean. And a logarithmic transformation

made every data value x equal to ln(x+ 0.2).

The complete summary of the numerical transformations as combined with different feature

selection techniques is in Table 1. Note that numerical transformations were performed after feature

selection was complete on the untransformed data, primarily for reasons of time. For some of our

feature selection techniques, different numerical transformations would have given different feature

subsets.
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No. Feature Selection Transformation #Features

1 CFS Binary 13

2 CFS Log 13

3 CFS None 13

4 CFS Standardize 13

5 High Correlation(ρ = 0.8) Binary 679

6 High Correlation(ρ = 0.8) Log 679

7 High Correlation(ρ = 0.8) None 679

8 High Correlation(ρ = 0.8) Standardize 679

9 Lasso Binary 134

10 Lasso Log 134

11 Lasso None 134

12 Lasso Standardize 134

13 Low Correlation(ρ = 0.25) Binary 421

14 Low Correlation(ρ = 0.25) Log 421

15 Low Correlation(ρ = 0.25) None 421

16 Low Correlation(ρ = 0.25) Standardize 421

17 None Binary 980

18 None Log 980

19 None None 980

20 None Standardize 980

21 Principal Components Principal Components 275

22 Random Forest Binary 50

23 Random Forest Log 50

24 Random Forest None 50

25 Random Forest Standardize 50

Table 1: 25 Datasets From Numeric Transformation and Feature Selection Combinations



5 Feature Selection

5.1 Introduction

After we aggregated the data from all the individual tables into a single feature set, we had 9,948

patients with 980 (partially redundant) features. While some modeling techniques can handle a

large number of highly correlated features, others cannot. Additionally, we lacked the computing

power to run more sophisticated, computationally intensive modeling techniques (like SVMs and

GBDTs) on such a large dataset. Because of these issues, we turned to feature selection in an

attempt to reduce the feature size (p) of our dataset.

We used six different feature selection processes. Four of the processes are “filter” approaches

done prior to modeling, and two of the processes are “wrapper” approaches done as part of modeling.

Technically, our “wrapper” approaches (using Random Forests and Lasso to select features) become

“filter” approaches when the feature sets selected by a model’s “wrapper” are then used in other

models, but this is merely a semantic issue.

The results of the feature selection (as combined with the numerical transformations) are

seen in Table 1.

5.2 Principal Components Analysis

While principal components is technically not a feature selection technique, since it was an attempt

to reduce the number of features we describe it here. Principal components analysis [Kuhn and

Johnson, 2013] was applied to the 980 features. All features with an eigenvalue (λ) greater than 1

were kept, for a total of 275 features post-PCA (see Figure 2c)

5.3 Pair-Wise Correlation Reduction

Using the findCorrelation function in the caret R package [Kuhn et al., 2014], we eliminated fea-

tures having the highest pair-wise correlations. FindCorrelation works by searching for the highest

absolute pair-wise correlation, determining the mean absolute correlation of each pair member with

the other features, and then eliminating the feature with the greater mean absolute correlation from

the dataset. This process is repeated iteratively until there are no remaining pair-wise correlations

above a user-chosen threshold.

To determine the cutoff threshold, we applied the findCorrelation process across the 0 to

1 range of possible absolute correlations. This gave us a plot of absolute correlation thresholds vs.

number of features (Figure 2b).

In the graph, we noticed that at pair-wise correlation thresholds of approximately ρ = 0.8

and approximately ρ = 0.25 were the greatest changes in slope. We used both these values as

thresholds for the findCorrelation function, creating two feature subsets. The high correlation
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(a) Reduction in Gini Coefficient vs. Features,

Ranked by Importance

(b) Number of Features vs. findCorrelation

Threshold

(c) Lowest Eigenvalue vs. Principal Components

Retained. The red line is λ = 1.

(d) Values of Coefficients vs. Changing Lambda

in a Lasso model

Figure 2: Figures Related to Feature Selection

(ρ = 0.8) feature subset had 679 features, and the low correlation (ρ = 0.25) feature subset had

421 features.

5.4 Correlation Feature Selection

We applied Correlation Feature Selection (CFS) as described in Hall and Smith [1997]. Descrip-

tively, CFS works by selecting the features that are most correlated with the target feature but
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not correlated with each other. CFS produced the smallest feature set of the entire project, with

only 13 features retained (see Table 2). Many of these features can be seen as proxy for age, which

indicates that older people are more likely to get diabetes, or a proxy for poor digestive health,

which is also strongly associated with diabetes.

5.5 Random Forests Importance

Using the Random Forests modeling technique in R’s randomForests [Liaw and Wiener, 2002]

package, we induced a predictive model. As part of inducing a model, the randomForests package

provides relative importance measures of features based on how much that feature reduces the

impurity (measured by gini coefficient) of child nodes.

The first attempt at feature selection using Random Forests on the full set of 980 features had

highly correlated variables grouped together when features were sorted by their mean reduction in

impurity. For example, of the top 5 features, two were maximum BMI and minimum BMI, and

another two were age and date of birth. Inducing a Random Forests model on the feature set

with all absolute pair-wise correlations above 0.80 removed (p=679) still had correlated features

grouped together. Finally, inducing a Random Forests model on the feature set with all absolute

pair-wise correlations above 0.25 removed (p=421) and number of trees=1000 (so Random Forest’s

random selection of features at each spilt gave equal consideration to all features) left few correlated

features.

Plotting the gini coefficient of features against their rank in importance showed a Pareto

distribution, with a clear inflection point at approximately 50 features. These 50 features became

a feature set (see Figure 2a). The top 15 features as selected by Random Forests can be seen in

Table 2.

5.6 Lasso Feature Selection

Finally, we induced a Lasso [Tibshirani, 1996] model with R’s glmnet [Friedman et al., 2010]

package. Lasso is a form of regularized regression, which imposes an additional modeling penalty

(λ) equal to the summed absolute value of all regression coefficients that is added to the squared

errors of the model (see Figure 2d). On the raw feature set (p=980), Lasso reduced the regression

coefficients to 0 for 844 features, leaving 136 features. The top 15 features as selected by Lasso can

be seen in Table 2.

5.7 Evaluation of Different Feature Selection Approaches

To evaluate the 25 datasets (see Table 1) generated by combinations of feature selection and numeric

transformation, we looked at summary statistics of lift values at rates of positive prediction of 8.3%

and 19.67% (Table 3). Among the numeric transformations, binary performed the worst with an
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average lift value of 2.18 and 2.54 at a rate of positive prediction of 19.67% and 8.3%, respectively.

Among feature selection techniques, Low Correlation (ρ = 0.25) and Random Forests performed

worst, followed by No Transformation. It is important to note that High Correlation (ρ = 0.8) (679

predictors), CFS (13 predictors) and Lasso Feature Selection (134 predictors) perform significantly

better than No Transformation (980 predictors).
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No. CFS Features Random Forest Features Lasso Features

1 Taking cholesterol medication?
Taking cholesterol

medication?

Count of diagnoses indicating

Lipid Metabolism Disorders

2 Birth year

Minimum Diastolic Blood

Pressure from the last year

the patient came in

Count of diagnoses of Lipoid

Metabolism Disorders

3
Patient’s max BMI in the

last year they visited the doctor

Highest temperature in the

last year the patient came in

Whether the patient has

ever been diagnosed with a

circulatory system disease

4
Maximum systolic blood

pressure

Maximum height recorded

from the last year

Count of diagnoses indicating

renal disease

5
Score of diagnoses indicating

lipid metabolism disorders

Difference between highest

and lowest weights recorded

in last year

Lab Panel CBC Abnormal

6
Count of diagnoses indicating

circulatory system diseases

Has any medication been

prescribed?
Taking cholesterol medication?

7
Count of diagnoses indicating

lipid metabolism disorders
Chronic Renal Failure

Max single visit score of an

external Health Hazard diagnoses

8 Secondary diabetes diagnoses?

Minimum Respiratory Rate

recorded in the last year the

patient came in

Diagnoses formula score for

Lipoid Metabolism Disorders

9
Count of diagnoses indicating

blood diseases

How long since the patient

last visited the doctor?

Score for genital disorder

diagnoses

10
Score of diagnoses indicating

multiple circulatory diseases

Range of respiratory rates

observed in the last year

Count of chronic Lipoid

Metabolism Disorder diagnoses

11
Count of diagnoses indicating

hypertension
Diabetes complications

No. of times a patient visited a

podiatrist

12
Count of diagnoses indicating

renal disease

How many years a patient

has had a diagnoses
Count of total diagnoses

13
Has any medication been

prescribed?

Maximum Single Visit

Score of a Skin Disease

diagnosis

Gender

14
Count of unspecified

back disorder diagnoses

Count of chronic Digestive

Diseases diagnoses

15
Count of unspecified

anemias diagnoses

How many allergies a patient

has medications for

Table 2: Best Features Remaining after Various Feature Selection Techniques



Transformation

Lift 19.67% None Standardize Log Binary

Mean 2.25 2.235 2.207 2.187

SD 0.231 0.234 0.174 0.118

Feature Selection

Lift 19.67% None
High

Correlation

Low

Correlation
Lasso

Random

Forest
CFS

Mean 2.196 2.363 1.959 2.35 2.013 2.305

SD 0.216 0.082 0.078 0.104 0.074 0.123

Transformation

Lift 8.3% None Standardize Log Binary

Mean 2.687 2.585 2.65 2.545

SD 0.293 0.244 0.21 0.203

Feature Selection

Lift 8.3% None
High

Correlation

Low

Correlation
Lasso

Random

Forest
CFS

Mean 2.583 2.709 2.457 2.756 2.453 2.619

SD 0.261 0.17 0.242 0.25 0.199 0.245

Table 3: Summary Statistics of Lifts at Rates of Positive Prediction of 8.3% and 19.67%, Organized

by Feature Selection Techniques and Numeric Transformations.



6 Modeling

6.1 Metrics and Rationale

Our goal in modeling was to correctly classify patients as having or not having diabetes. Lift was

used to evaluate the models, where

Lift =
TruePositive

TruePositive+ FalsePositive

In addition to creating lift plots with R’s ROCR package [Sing et al., 2005], we manually

computed lifts. Predictions were ordered from most likely to least likely to have diabetes, and

lifts were calculated at specific points in the ordered predictions (sometimes called “point lifts” or

“instantaneous lifts”). We measured lift at 8.3% of ordered predictions (the rate of diabetes in the

USA [CB Online Staff, 2012]), and 19.7% of ordered predictions (the rate of diabetes in our test

set). These instantaneous lifts allowed for the comparison of far more models than could fit on a

single lift plot.

When choosing modeling techniques, we looked for techniques which both classified data and

had an obvious way to rank predictions (for lift calculations). We chose Logistic Lasso Regression

and Logistic Ridge Regression because they are wrapper models suited to dealing with large sets of

data, and because they return probabilities rather than merely a prediction. We chose unpenalized

Logistic Regression because it is the traditional baseline for classification, and because it returns

probabilities. We chose Random Forest because it is a wrapper model suited to dealing with large

sets of data. Finally, we chose Support Vectors Machines (SVM) and Gradient Boosted Decision

Trees (GBDT) because they tend to perform well in classification tasks. All of our chosen techniques

(except logistic regression) were suitable for use with sparse, near-multicollinear datasets.

Calculating lifts from Random Forests, SVMs, and GBDTs required an extra computational

step. These modeling techniques do not return probabilities, orderings, or rankings, but merely

predictions. To get an ordering of predictions to calculate lifts, we combined multiple predictions

from our different datasets(see Table 1). Patient by patient, we took the arithmetic mean of

these predictions (where 0=no diabetes and 1=yes diabetes). This allowed an (admittedly coarse)

ordering of predictions by likelihood of having diabetes.

6.2 Splitting the Data: Train, Test, and Holdout Sets

To evaluate our model, we subsetted our 9948 samples into three sets. A training dataset of 5200

samples was used to induce models. A test dataset of 1800 samples was used to evaluate the

performance of our models and inform decision making. A final “holdout” set of 2948 samples was

left untouched to provide a final evaluation of the model on data that was not used to inform model

construction.
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Raw accuracies of all of our models can be seen in Table 4. Lifts (after ranking predictions

by confidence of a patient having diabetes) of the top 25 models at 8.3% of predictions are in Table

5, and lifts of the top 25 models at 19.67% of predictions are in Table 6.

6.3 Logistic Regression

Binomial Logistic Regression models were induced as a baseline for evaluating other modeling

techniques. Models for all 25 datasets in Table 1 were induced using the glmnet R package [Kuhn

et al., 2014]. On our test sets, Logistic Regression never performed better than the nave 80.3%-

correct “assume no patient has diabetes” method, and for many test sets the Logistic Regression

models had accuracies more than 10% below the other modeling techniques (see Table 4). Logistic

Regression is especially ill-suited for sparse (low variance), high-dimensional data. The highest

Logistic Regression accuracy was on the PCA dataset, where every feature had a minimal amount

of variance. The worst Logistic Regression accuracies were on the data selected by Random Forests-

a modeling technique highly indifferent to sparsity or variance.

Because Logistic Regression performed significantly below 80% correct on test data, we de-

cided to abandon it and use the nave 80.3%-correct “assume no patient has diabetes” method as

the baseline to evaluate modeling techniques against.

6.4 Ridge Regression

Ridge Regression is a form of regularized regression which assigns a cost penalty to the sum of

squared coefficient values. This penalty helps Ridge Regression deal with poor features and mul-

ticollinearity in a way Logistic Regression cannot. Our penalty (λ) was tuned using 5-fold cross

validation, with tested λs ranging from 113.02-0.01.

Ridge Regression achieved very high test set accuracies of 85.09% and 84.23% on the stan-

dardized dataset with all features and the PCA datasets, respectively (Table 4). However, Ridge

Regression models did not perform as well as other modeling techniques when evaluating lifts (

#19 in Table 5 and #15 in Table 6).

6.5 Lasso

Lasso Regression, which imposes an absolute value penalty similar to Ridge Regression’s squared

penalty, was used for both feature selection and modeling. To select the best penalty (λ), we used

5-fold cross validation while testing penalties ranging from 2.83-0.0002. We observed that the Lasso

model generally had the best lifts with the Lasso-generated datasets, which is unsurprising. We

were able to achieve lifts of 3.03 (on top 8.3%: #7 in Table 5) and 2.49 (on top 8.3%: #7 in Table

5) with the test data.
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6.6 Random Forests

In addition to regression-based modeling techniques, we used a handful of classification-based mod-

eling techniques, including Random Forests, which we used both to induce models and for feature

selection. We determined the number of trees (300) manually, by noting the increase in accuracy

on evaluation data as tree count increased. The number of features to consider per split was left at

the package default of
√
p, to deal with the differing counts of features across our different datasets.

Random Forests is especially well suited for large feature sets. It was run on all 25 datasets

listed in Table 1, and different combinations of the predictions from these 25 datasets (see Table

7) were averaged on a patient-by-sample basis to order the predictions so lifts could be calcu-

lated. Random Forests models generally performed very well when lift of the top 8.3% of diabetes

likelihood was considered, but not as well at 19.7% of ranked predictions.

6.7 Support Vector Machines (SVMs)

SVMs are powerful classification-based modeling techniques, but they require considerable com-

puting resources to build. One of the reasons to use feature selection on a dataset is so a more

computationally-intensive modeling technique like SVM can be used. SVMs were built on the 9

datasets with the fewest features, as detailed in Table 7, and tuned using 5-fold cross-validation

repeated twice (aided by the caret R package). Slack penalties were tuned using a grid search on

a dataset-by-dataset basis. Only a linear kernel was considered.

Like Random Forests, SVMs were created on multiple feature sets and arithmetic means of the

0 and 1 predictions were calculated on a per-patient basis to generate rankings of predictions (Table

7. SVMs did not perform as well as we expected at (#15 in Table 5). Furthermore, the SVMs had

a tendency to under-predict diabetes, and less than 19% of the samples had a positive prediction,

which meant we could not evaluate the lift of the top-ordered 19.7% of ranked predictions.

6.8 Gradient-Based Decision Trees (GBDTs)

Like SVMs, GBDTs require considerable computing resources. And like SVMs, we induced GBDTs

on the 9 datasets with the fewest features, as detailed in Table ??. The GBDTs were tuned with

a grid search using 5-fold cross-validation repeated twice (with the ?? R package). The tuned

parameters for the GBDTs were number of trees (100, 150, 200, 500, 750, 1000, 3000, 5000),

interaction depth (1, 2, 3, 5, 10, where 2(interactiondepth) is the number of terminal nodes), and

learning rate (.1, .01, .001). Restrictions on the relationship between number of trees and learning

rate were imposed to save computation time (for example, on larger number of trees only smaller

learning rates were considered, and on smaller number of trees only greater learning rates were

considered).
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Again, like Random Forests and SVMs, multiple GDBTs from different feature sets had to

be combined to generate ranked predictions (Table 7). GBDTs performed very well when the top-

ranked 8.3% of positive diabetes classifications were considered (# 5 in Table 5). However, like

SVMs, the GBDTs had a tendency to under-predict diabetes, and the lift from the 19.7% highest

probability predictions could not be considered since the GBDTs in aggregate delivered positive

predictions for fewer than 19.7% of the patients in the dataset.

6.9 Ensembles

In addition to the “ensembles” of Random Forests, SVMs, and GBDTs used to generate ranked

predictions, we induced ensembles combining multiple modeling techniques. These ensembles were

created by noting models that had high lifts and combining these high-performing models together.

We created three final ensembles: “Ensemble 7” and “Ensemble 15” were the models (or groups of

models in the case of Random Forests, SVMs, and GBDTs) with the highest lifts (7 highest and 15

highest, respectively) at the 8.3% cutoff, and “Ensemble 10 Lasso” was the model with the highest

lift at the 19.67% cutoff (which happened to all be Lasso). See Table 7 for more details about

the individual models in the ensembles. These ensembles performed very well, and had the added

benefit of allowing SVMs and GBMs to be a part of models that could be evaluated at the 19.67%

cutoff.

6.10 Final Model

Lift charts were made of the best 5 models at the 8.3% cutoff (Figure 3a), and the 19.67% cutoff

(Figure 3b). After evaluating all of our models (both qualitatively and quantitatively), including

the ensembles, we chose two best models. One model, the Random Forest of all 25 datasets, had

the highest lift (3.17) at the 8.3% cutoff (Table 5). The other model, ”Ensemble 15”, had the

highest lift (2.55) at the 19.67% cutoff.
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(a) Lift Plots of the 5 Models with the Highest Lift at the 8.3% Cutoff

(b) Lift Plots of the 5 Models with the Highest Lift at the 19.67% Cutoff

Figure 3: Lift Plots of the Best Models on Test Data. The horizontal line and vertical line intersect

at the mean lift for all models on the plot at the target cutoff percentage.
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Feature

Selection
Transformation

Logistic

Regression

Lasso

Logistic

Regression

Ridge

Logistic

Regression

Random

Forests

PCA PCA 0.793 0.804 0.809 0.802

None

None 0.697 0.811 0.808 0.821

Standardized 0.697 0.812 0.803 0.818

Log 0.504 0.817 0.803 0.814

Binary 0.657 0.816 0.798 0.814

High

Correlation

(ρ = 0.8)

None 0.487 0.813 0.809 0.818

Standardized 0.487 0.811 0.812 0.817

Log 0.601 0.813 0.799 0.819

Binary 0.632 0.811 0.799 0.816

Low Correlation

(ρ = 0.25)

None 0.420 0.817 0.803 0.820

Standardized 0.420 0.806 0.797 0.820

Log 0.276 0.813 0.803 0.822

Binary 0.329 0.812 0.804 0.818

CFS

None 0.551 0.817 0.801 0.811

Standardized 0.551 0.814 0.803 0.809

Log 0.721 0.812 0.803 0.811

Binary 0.741 0.813 0.806 0.813

Random

Forest

None 0.197 0.814 0.807 0.819

Standardized 0.197 0.812 0.812 0.819

Log 0.197 0.811 0.806 0.818

Binary 0.311 0.813 0.804 0.817

Lasso

None 0.758 0.815 0.807 0.822

Standardized 0.758 0.815 0.811 0.818

Log 0.233 0.817 0.807 0.821

Binary 0.639 0.812 0.793 0.817

Table 4: Prediction Accuracies (Test Sets) of 4 Modeling Techniques on all Datasets in Table 1.



No. Model Transformation Feature Selection Lift(8.3%)

1 Ensemble Random Forest 25 3.174

2 Ensemble 15 3.14

3 Ensemble 7 3.14

4 Ensemble Random Forest 15 3.14

5 Ensemble GBM 9 3.14

6 Ensemble Random Forest 12 3.071

7 Lasso None High Correlation 3.037

8 Lasso None Lasso 3.037

9 Lasso Standardize Lasso 3.003

10 Lasso Log 2.969

11 Ensemble Random Forest 9 2.969

12 Lasso None CFS 2.935

13 Ensemble GBM 6 2.935

14 Lasso Log Lasso 2.901

15 Ensemble SVM 9 2.901

16 Ensemble 10 Lasso 2.867

17 Lasso Standardize CFS 2.832

18 Lasso None 2.832

19 Ridge None 2.832

20 Lasso Binary High Correlation 2.832

21 Lasso Log CFS 2.832

22 Lasso Binary Lasso 2.832

23 Lasso Binary 2.832

24 Ensemble SVM 6 2.832

25 Ridge PCA PCA 2.798

Table 5: Top 25 Lifts (on Test Data) at 8.3% of Predictions (After Ranking Predictions by Confi-

dence of Patient Having Diabetes). Ensemble composition detailed in Table 7. Additional Results

in completeLifts.xlsx.



No. Model Transformation Feature Selection Lift (19.67%)

1 Ensemble 15 2.557

2 Ensemble 7 2.542

3 Ensemble 10 Lasso 2.514

4 Lasso None High Correlation 2.499

5 Lasso Standardized Lasso 2.485

6 Lasso None CFS 2.471

7 Lasso Standardized High Correlation 2.456

8 Lasso None Lasso 2.456

9 Lasso Standardized CFS 2.442

10 Lasso Log 2.427

11 Lasso Log Lasso 2.427

12 Lasso None 2.399

13 Lasso Log High Correlation 2.399

14 Lasso Standardized 2.384

15 Ridge None 2.384

16 Ridge Standardized CFS 2.37

17 Ridge None Lasso 2.37

18 Lasso Binary High Correlation 2.341

19 Ridge PCA Principal Components 2.341

20 Ridge None High Correlation 2.327

21 Ridge Binary High Correlation 2.327

22 Ridge Standardized Lasso 2.327

23 Lasso Log CFS 2.313

24 Lasso Binary Lasso 2.313

25 Ridge Standardized 2.313

Table 6: Top 25 Lifts (on Test Data) at 19.67% of Predictions (After Ranking Predictions by

Confidence of Patient Having Diabetes). Ensemble composition detailed in Table 7. Additional

Results in completeLifts.xlsx.



No. Ensemble Components

1 Ensemble Random Forest 25 All 25 datasets in Table 1

2 Ensemble Random Forest 15
Same as above excluding PCA, all FS:Low Correlation (ρ = 0.25),

all T:Binary

3 Ensemble Random Forest 12 Same as above row, excluding all full-featured (p=980) datasets

4 Ensemble Random Forest 9
Same as above row, excluding all FS:High Correlation (ρ = 0.8)

datasets

5 Ensemble SVM 9 Same as above row

6 Ensemble GBM 9 Same as above row

7 Ensemble SVM 6 Same as above row, excluding all FS:Random Forests

8 Ensemble GBM 6 Same as above row

9 Ensemble Top 7

Ensemble Random Forest 25, Ensemble Random Forest 15,

Ensemble GBM 9, Ensemble Random Forest 12,

Lasso T:None FS:High Correlation, Lasso T:None FS:Lasso,

Lasso T:Standardize FS:Lasso

10 Ensemble Top 15

Same as above + Lasso T:None FS:Log,

Ensemble Random Forest 9, Lasso T:None FS:CFS,

Ensemble GBM 6, Lasso T:Log FS:Lasso,

Ensemble SVM 9, Lasso T:Standardize FS:CFS,

Lasso T:None FS:None

11 Top 10 Lasso

Lasso T:None FS:High Correlation (ρ = 0.8),

Lasso T:Standardize FS:Lasso,

Lasso T:None FS:CFS, Lasso T:None FS:Lasso,

Lasso T:Standardize FS:High Correlation (ρ = 0.8),

Lasso T:Standardize FS:CFS, Lasso T:Log FS:None,

Lasso T:Log FS:Lasso, Lasso T:None FS:None,

Lasso T:Log FS:High Correlation (ρ = 0.8)

Table 7: Ensemble Models Considered. FS: means feature set and T: means Numeric Transforma-

tion



7 Final Evaluation of Models on Holdout Data

Having selected our favored models (Random Forests of all 25 datasets for the 8.3% cutoff, and

”Ensemble 15” for the 19.67% cutoff), we rebuilt them using both the training and test patients

(a combined total of 7000 patients). The Lasso models were then tuned again tuned using 5-fold

cross validation to select the optimal λ, but the SVM and GBM were not retuned due to time

constraints.

We then evaluated these final models. The 25 Random Forests had a lift of 3.63 at a cutoff of

8.3% of ranked predictions. ”Ensemble 15”, which was evaluated at a cutoff of 17.97% of predictions

to match the prevalence of diabetes in the holdout data, had a lift of 3.01. Both of these lifts were

higher than in the test data, likely because they had more samples to train on. Lift plots for these

models are in Figure 4.

We believe the model performance is easily explained by the characteristics of the models.

Both Lasso and Random Forests are techniques suited to sorting through large sets of features. The

Random Forest model performed well, but likely under-predicted at the higher cutoff percentages

(19.67% and 17.97%), which in turn made it more accurate at the lower cutoff percentage (8.3%).

Lasso (which made up most of ”Ensemble 15”) did not under-predict at the higher cutoff percentage,

but this likely led to more inaccurate predictions at the lower cutoff percentage. Both models

benefitted from the variation provided by feature selection, and ”Ensemble 15” likely benefitted

from the variation of being composed of multiple modeling techniques.
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Figure 4: Lift Plots of ”Random Forest 25” (attempt to maximize lift at rate of positive predictions

= 8.3%) and ”Ensemble 15” (attempt to maximize lift at rate of positive predictions = 17.97%) on

Evaluation (Holdout) Data.

8 Key Findings

We initially started with a total of 980 features, but using different feature selection techniques

we were able to reduce this count without losing (and sometimes gaining) predictive power. With

Correlation Feature Selection we reduced 980 features to 13 (1.3% of the original feature count)

without losing much predictor power. Despite having only 13 features, the CFS datasets outper-

formed a pair-wise correlation reduction (ρ = 0.25) selection with 421 features, a Random Forests

importance-based selection with 50 features, and the original dataset with 980 features (see Table

4). This is likely because CFS emphasizes the importance of certain factors like age, cholesterol,

BMI, renal disease, high blood pressure, and blood disorders–all factors strongly related to diabetes.

While the feature count is low, the power of the features is very high and the ”fat” is non-existent.
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Despite the power of feature selection, when it comes to building the best models ensembles

work better than individual models (Tables 5 and 6). Multiple datasets can add to the variation of

ensembles (thus reducing the overall error), and feature selection provides a means of creating these

multiple datasets. In our results, we saw that even basic ensembles consisting of means of discrete

predictions performed well. We also saw that multiple modeling techniques combine together to

create the most effective ensembles.

Additionally, we showed that computationally demanding modeling techniques like SVMs

and GBDTs gave decent results on datasets of reduced features (Table 5). With proper feature

selection, a great deal of computational time could be saved without any reduction in predictive

power.

Lastly, we confirmed domain-based assumptions about the nature of diabetes through the

use of feature selection. It is clear from Table 2 that feature selection provided relatively logical

features for this diabetes identification problem. However, feature selection also highlighted some

less-than-obvious features, like range of weights, body temperature, and allergy medication count.

There may be an application of feature selection as a form of learning, where the goal is not building

better models, but learning more about datasets–with possible real-world applications

9 Limitations, Shortcomings, Compromises, and Lessons Learned

9.1 Sample Mean vs. Population Mean

The patients in the Kaggle dataset had a rate of diabetes 19.7%, but the US population has a

rate of diabetes closer to 8.3%. We recorded lifts at ranked prediction rates of 8.3% and 19.7%

to determine potential model effectiveness at both the population and sample diabetes prevalence

rates, but without further information there is little we can do to determine how applicable our

model is to the population outside the sample.

9.2 Failure to Stay Simple or Build a Proper Baseline Model

Our initial inclination was to generate as many feature-increasing data transformations as possible,

then apply many different feature selection criteria to those datasets in order to find the best

combination of features to induce models from. While this approach yielded several datasets and

models to choose from, we should have started with a relatively simple dataset and model in order

to have a true standard to improve upon instead of the nave 80% diabetes prevalence rate. Having

a baseline model would also allow us to compare increases in explanatory power with increases in

model complexity. We did attempt to create a baseline model with Logistic Regression, but the

test performance of the Logistic Regression model was awful.
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9.3 Data Leakage from Diabetes Features

In the SyncDiagnosis table, several ICD9 codes indicated complications from diabetes. While these

made good predictors in the training model, patient information about these conditions should not

have been included in the Kaggle data–Kaggle removed all diagnosis codes directly referencing type

2 diabetes, all medications for treating diabetes, and all lab results showing the presence of diabetes,

but left these complications in. More generally, this information did not advance any knowledge

about what conditions are have high co-occurance with diabetes, as diabetes complications are

already known to be associated with diabetes.

9.4 Waiting to Look at Kaggle Winners was Smart

The winners and runners-up of the Kaggle competition used significantly different methods than

our own to build their prediction models–methods on domain knowledge of the medical conditions

associated with diabetes. Our approach was markedly different, relying on bulk feature generation

followed by automated feature selection. While there was significant overlap in the information

captured by the different approaches, waiting to read their documentation until after we had created

several predictor models led us to invent many predictor features (like our diagnoses scores) which

the winners had not considered, but which contained significant predictive power. Their models

also contained some predictors we did not think of, but due to the veracity of our dataset and model

creation, our feature creation was more voluminous and varied than the winners, and we learned

significantly more by thinking up our own features than we would have by copying and improving

on the work of others.

Towards the end of the project, we went back and added some features to our data based on

feedback and the Kaggle reports, specifically a total count of physician visits and a transformation

of a patient’s home state.

9.5 Kaggle Projects are Difficult

Kaggle projects are problems where it is difficult to find solutions that are significantly better than

the nave method. Kaggle is built around the idea of letting the best and brightest work to solve a

problem, and this dynamic requires challenging problems to keep interest high. We did not expect

this project to be as hard as it was, and we need to keep Kaggle’s difficulty in mind when selecting

projects in the future. That being said, the difficulty of the project led to most of our learning,

and we are significantly better experienced in data cleaning and modeling due to attempting this

project.
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9.6 Too Many Datasets with too Few Benefits

Our instinct to constantly create more datasets for testing left us with many more datasets than are

necessary for the boost given in model accuracy. Our strategy led to creating many datasets created

from the same data, hoping that somewhat small changes would reveal new insights. However, we

were not able to glean much new information from the large number datasets (and features) we

generated. While this exercise was manageable in a school setting, in the real world where datasets

are larger and deadlines come faster, this strategy could have easily backfired and left us with too

many datasets and too few meaningful results.

9.7 Binarization Was a Bust

As can be seen in Table 4, the binarized datasets performed worse than the untransformed, stan-

dardized, and log-transformed datasets for almost all feature selection and modeling techniques.

This result was not surprising, given that the binary transformation significantly reduces the in-

formation gained from many of the features. It is interesting to note that CFS picked a binary

feature (cholesterol medication) as the single highest correlated feature with diabetes, but this

merely points to the need to try binary features alongside non-binary features, instead of making

every feature binary.

9.8 Feature Selection Worked

The model accuracies in predicting diabetes on the datasets with fewer features were comparable

to the model accuracies on datasets with more features. This result validates the idea that feature-

reduction techniques that seek to preserve information while reducing feature count can be effective,

especially when they are preserving information relating to the feature of interest, in this case

diabetes condition. It is worth noting that the dimension reduction method that produced the

worst results, PCA, was the one preserved information without regards to the variable of interest.

Since the datasets contained hundreds of scarce features, and only a few of these were correlated

with diabetes, a method like PCA, which does not seek to preserve variance correlated with the

feature of interest, is predisposed to produce less accurate models than other data transformations,

and even than the untransformed data.

9.9 Differences in Feature Selection

Using several different feature selection methods on the same dataset allowed for easy comparison

of the different biases inherent in each selection criteria. In this project, it became obvious that

the Random Forest feature selection favored numeric features over binary features, as the numeric

features had more points to divide by compared to the binary features (and thus more opportunities
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to reduce node impurity). Likewise, the Lasso selector favored variables with large magnitudes, since

predictors requiring smaller coefficients would tend to be favored (which is a reason to standardize

data before running Lasso). We failed to standardized our Lasso data at first, but it seemed that

the smart code behind the glmnet package which dealt with this issue saved us from going down a

wrong path.

9.10 Lift vs. Accuracy

Initially, we were evaluating all of our models on their accuracy on a test set. Based on these

results, we assembled an ensemble of models that had good test accuracy, then evaluated them on

the holdout set. As Professor Ghosh pointed out, the metric we should have been more concerned

about was lift, especially for the patients predicted most likely to be diabetic. Based on this

feedback, we re-evaluated our models, and our final ensemble was composed of models which each

had impressive lift charts on their own. There is still the possibility, however, that our models

could have been improved by paying more attention to lift from the beginning. Some of the best-

performing models were Random Forests, and while the accuracy of these models stopped growing

before our selected number of trees (300), we never plotted lift versus tree number. Given how the

Random Forests models performed so well in aggregate across our datasets (which is essentially a

case of more trees with a weighted dataset), it is possible we could have increased lift by building

more trees.

9.11 The Pitfalls of Excel

Some tables were transformed in Excel rather than R, due to their small dimensions and user

preference. While this initially seemed to be an efficient move, the pitfalls of manipulating data in

Excel soon became obvious: data manipulations done in Excel were not easily replicated, whereas

a code trail existed in R. Additionally, mixups occurred in Excel which required considerable time

to repair, whereas in R it would have meant a code change and a re-run. Lastly, it was much more

difficult to handle missing values in Excel than in R.

9.12 Throwing out Good Data vs. Keeping Bad Data

Filter feature selection methods, while useful for feature reduction, do not select for predictive

power. Wrapper methods, however, select features based mainly on their predictive power. Because

of this difference, there is a risk of throwing out low-information but high-predictive-power data

when using filter feature selection methods. In this project, this risk was realized with the Low

Correlation (ρ = 0.25) dataset, which induced significantly worse models than the High-Correlation

(ρ = 0.80) dataset and other datasets with far fewer features.
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9.13 Missing “Test” Data and Little Cross Validation

The final step before modeling was to create a training set and test sets. While Kaggle had a set

of test data, they hid the test data when the competition ended. Since we needed a standard to

measure our final models against, we set aside 2948 patient records as a ”holdout” to determine

model performance on untouched data. Of the 7000 remaining records, 5200 were designated as

training data and 1800 used as test data. While cross-validation would have been a more robust

way to build models, several models were very cumbersome to evaluate with cross-validation in R,

and we preferred to spend our time testing more models instead of refining only a few, especially

since we had 25 datasets to test the models on.

10 Conclusion

Our group took 17 tables containing a wide variety of healthcare information about 9948 patients

and combined it into one large dataset with 980 features per patient. We then created 24 distinct

versions of this dataset, applying six different methods of feature selection to the data and 3 different

methods of numeric transformation. We then applied a variety of modeling techniques, which we

evaluated using accuracy and lift. We found our best-performing models were two ensembles, and

they achieved instantaneous lift ratios of 3.17 (at a positive prediction rate of 8.3%) and 3.012 (at

a positive prediction rate of 17.97%) on unseen data. While we cannot submit these models to

Kaggle since the competition is closed, we have accomplished our goal of becoming familiar with

healthcare data and applying advanced predictive analytics to a complex problem which we did not

possess significant domain knowledge of. We also showed the general efficacy of feature selection,

both as a basis for model induction and as a technique for exploring datasets.
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